Machine learning approach could detect drivers of atrial fibrillation

Mapping of the explanted human heart

Researchers have designed a new machine learning-based approach for detecting atrial fibrillation (AF) drivers, small patches of the heart muscle that are hypothesised to cause this most common type of cardiac arrhythmia. This approach may lead to more efficient targeted medical interventions to treat the condition, according to the authors of the paper published in the journal Circulation: Arrhythmia and Electrophysiology.

The mechanism behind AF is yet unclear, although research suggests it may be caused and maintained by re-entrant AF drivers, localised sources of repetitive rotational activity that lead to irregular heart rhythm. These drivers can be burnt via a surgical procedure, which can mitigate the condition or even restore the normal functioning of the heart.

To locate these re-entrant AF drivers for subsequent destruction, doctors use multi-electrode mapping, a technique that allows them to record multiple electrograms inside the using a catheter and build a map of electrical activity within the atria. However, clinical applications of this technique often produce a lot of false negatives, when an existing AF driver is not found, and false positives, when a driver is detected where there really is none.

Recently, researchers have tapped machine learning algorithms for the task of interpreting ECGs to look for AF; however, these algorithms require labelled data with the true location of the driver, and the accuracy of multi-electrode mapping is insufficient. The authors of the new study, co-led by Dmitry Dylov from the Skoltech Center of Computational and Data-Intensive Science and Engineering (CDISE, Moscow, Russia) and Vadim Fedorov from the Ohio State University (Columbus, USA) used high-resolution near-infrared optical mapping (NIOM) to locate AF drivers and stuck with it as a reference for training.

“NIOM is based on well-penetrating infrared optical signals and therefore can record the electrical activity from within the heart muscle, whereas conventional clinical electrodes can only measure the signals on the surface. Add to this trait the excellent optical resolution, and the optical mapping becomes a no-brainer modality if you want to visualize and understand the electrical signal propagation through the heart tissue,” said Dylov.

The team tested their approach on 11 explanted human hearts, all donated posthumously for research purposes. Researchers performed the simultaneous optical and multi-electrode mapping of AF episodes induced in the hearts. ML model can indeed efficiently interpret electrograms from multielectrode mapping to locate AF drivers, with an accuracy of up to 81%. They believe that larger training datasets, validated by NIOM, can improve machine learning-based algorithms enough for them to become complementary tools in clinical practice.

“The dataset of recording from 11 human hearts is both extremely priceless and too small. We realiaed that clinical translation would require a much larger sample size for representative sampling, yet we had to make sure we extracted every piece of available information from the still-beating explanted human hearts. Dedication and scrutiny of two of our PhD students must be acknowledged here: Sasha Zolotarev spent several months on the academic mobility trip to Fedorov’s lab understanding the specifics of the imaging workflow and present the pilot study at the HRS conference – the biggest arrhythmology meeting in the world, and Katya Ivanova partook in the frequency and visualization analysis from within the walls of Skoltech. These two young researchers have squeezed out everything one possibly could, to train the machine learning model using optical measurements,” Dylov notes.


Please enter your comment!
Please enter your name here